Stochastic Gradient Descent
نویسندگان
چکیده
We consider two questions at the heart of machine learning; how can we predict if a minimum will generalize to the test set, and why does stochastic gradient descent find minima that generalize well? Our work responds to Zhang et al. (2016), who showed deep neural networks can easily memorize randomly labeled training data, despite generalizing well on real labels of the same inputs. We show that the same phenomenon occurs in small linear models. These observations are explained by the Bayesian evidence, which penalizes sharp minima but is invariant to model parameterization. We also demonstrate that, when one holds the learning rate fixed, there is an optimum batch size which maximizes the test set accuracy. We propose that the noise introduced by small mini-batches drives the parameters towards minima whose evidence is large. Interpreting stochastic gradient descent as a stochastic differential equation, we identify the “noise scale” g = (NB −1) ≈ N/B, where is the learning rate, N the training set size and B the batch size. Consequently the optimum batch size is proportional to both the learning rate and the size of the training set, Bopt ∝ N . We verify these predictions empirically.
منابع مشابه
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملConjugate gradient neural network in prediction of clay behavior and parameters sensitivities
The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...
متن کاملComparison of Modern Stochastic Optimization Algorithms
Gradient-based optimization methods are popular in machine learning applications. In large-scale problems, stochastic methods are preferred due to their good scaling properties. In this project, we compare the performance of four gradient-based methods; gradient descent, stochastic gradient descent, semi-stochastic gradient descent and stochastic average gradient. We consider logistic regressio...
متن کاملConditional Accelerated Lazy Stochastic Gradient Descent
In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate O( 1 ε2 ) improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate O( 1 ε4 ).
متن کاملAccelerating Stochastic Gradient Descent using Predictive Variance Reduction
Stochastic gradient descent is popular for large scale optimization but has slow convergence asymptotically due to the inherent variance. To remedy this problem, we introduce an explicit variance reduction method for stochastic gradient descent which we call stochastic variance reduced gradient (SVRG). For smooth and strongly convex functions, we prove that this method enjoys the same fast conv...
متن کاملFastest Rates for Stochastic Mirror Descent Methods
Relative smoothness a notion introduced in [6] and recently rediscovered in [3, 18] generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018